

Smart TSO-DSO interaction schemes, market architectures and ICT Solutions for the integration of ancillary services from demand side management and distributed generation

SmartNet Project Meeting, Florence | 24.10.2018

Pilot C Miguel Pardo – Endesa Distribución

Endesa - Vodafone - ONE - Tecnalia



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 691405











Vodafone Base Stations

More than 400 units just in Barcelona

Contracted Power of each one from 5kw to 15kw







#### Flexibility by Storage Capacity

Back Up Batteries - Base Station of Vodafone







#### Spanish pilot

DER Owner side. Demand Response Technology over VF Base Stations



Pilot flexible aggregation capacity: around 100 kW



#### Spanish pilot





#### Coordination scheme

#### Shared balancing responsibility model





#### Coordination scheme

#### Shared balancing responsibility model



Two different markets

Ancillary Service market for resources connected at TSO-grid Local Market for resources connected at DSO-grid

Ancillary services

**Balancing** in the interconnection point by respecting schedule profile (on behalf of TSO)

Congestion management in the distribution grid





By using flexibility from DER owners through Commercial market parties



#### Roles in the project

|                                 | Transmission System Operator | Balancing at interconnection level<br>Developing the TSO-DSO interaction                     |  |  |
|---------------------------------|------------------------------|----------------------------------------------------------------------------------------------|--|--|
| endesa                          | Distribution System Operator | By doing congestion management services for itself at local network                          |  |  |
|                                 | Commercial Market Party      | Virtual nodes emulating other CMP's (Smarthouses, PV's, BSs)                                 |  |  |
|                                 | Market operator              | Local market operation                                                                       |  |  |
| NE                              | Commercial Market Party      | Managing the portfolio of Vodafone radio base stations                                       |  |  |
| Vodafone                        | DER owner                    | Owner of the base stations (flexible resource)<br>Provider of connectivity services to CMP's |  |  |
| tecnalia) Inspiring<br>Business | Consulant                    | DR providers                                                                                 |  |  |







#### Pilot C: Local Market Operator

Endesa Distribución will play the **market operator** role at the local (distribution) level by means of the **market clearing algorithm**, which at the end is an OPF (Optimal Power Flow).

The OPF solves in the same optimization model both technical and marketrelated aspects of the balancing and congestion management services.

In other words, technical constraints and bid prices are combined in the same optimisation problem, which provides an optimal economical outcome.









### Web interface architecture





- Balancing and Congestion Management
  - Balancing
  - Network status
- Market
  - o Market price
  - Flexibility
  - Market results
  - o CMP bids

- CMP ONE (real)
- CMP TWO (virtual)
- CMP V2G (virtual)
  - Aggregated load (per CMP)



### Pilot C: Balancing & Congestion Management



| Information Process                                                                |  |  |  |
|------------------------------------------------------------------------------------|--|--|--|
| Active CMP:                                                                        |  |  |  |
| ONE last bids: 2018-03-21T15:30:00Z<br>VCMP01 last bids: 2018-03-21T15:10:00Z      |  |  |  |
| Next calculations at: 2018-03-21T15:14:00Z<br>Next market at: 2018-03-21T15:15:00Z |  |  |  |
|                                                                                    |  |  |  |



#### Pilot C: BCM - Manager





### Pilot C: BCM - Optimization





### Pilot C: BCM - Opt. – OPF + MarketClearing

$$\min \sum_{g \in G} \sum_{k \in K_g} lb_{gk}^+ P_{gk}^+ + \sum_{k \in K_{G_0}} lb_{0k}^- P_{0k}^- + \sum_{(i,j) \in \mathcal{L}} C_{ij}$$

s.t.

Power Flow technical constraints

**Balancing constraints** 

**Congestion constraints** 

Market Clearing constraints



### Pilot C: BCM - Opt. – OPF + MarketClearing

|                 | $P_{0k}^- > 0  \exists \ k \in K_{G_0}$                        | Demand surplus                                |
|-----------------|----------------------------------------------------------------|-----------------------------------------------|
| Balancing       | $P_{0k}^+ > 0  \exists \ k \in K_{G_0}$                        | Insufficient generation                       |
|                 |                                                                |                                               |
| Congestion      | $C_{ij} > 0  \exists \ (i,j)$                                  | Congestion in line ( <i>i</i> , <i>j</i> )    |
| Market Clearing | $k: \begin{cases} lb_{gk}^+ = 1\\ lb_{gk+1}^+ = 0 \end{cases}$ | Price bid block $k \in K_g$ for generator $g$ |



### Balancing

- Time plot of active power exchanged at TSO-DSO interconnection points
  - Scheduled profile (MW)
  - Actual active power measured data (MW)
  - o 1 plot per each TSO-DSO interconnection point in Pilot C
  - Adjustable time filter (window)





#### Network status

- Diagram of the distribution network downstream each TSO-DSO interconnection point
  - Voltage levels per node
  - Branch loadings (lines/cables, transformers)
  - Actual delivery of flexibility resources of the Pilot C (VODAFONE and virtual)
  - Updated every 1 minute





### Market price

- Time plot of the clearing price per market session at each TSO-DSO interconnection point (cent/kWh)
  - 1 plot per each TSO-DSO interconnection point in Pilot C
  - Adjustable time filter (window)





## Flexibility & Market results (dispatching)

- Flexibility:
  - Time plot of total flexibility volumes per market session at each TSO-DSO interconnection point (kW)
    - Dispatched flexibility
    - Available flexibility volumes
    - Time window with few recent market sessions
- Market results (dispatching):
  - Table of **dispatched flexibility volumes per CMP** per market session and node at each TSO-DSO interconnection point (kW)



Fusce sed bibendum ipsum. Nulla nulla nisl, tempus eget interdum et, consectetur a nisl. Fusce aliquet purus quis felis dignissim dapibus. Nullam quis auctor quam.

| Station    | Flexibility price | High price | Market Flexibility |
|------------|-------------------|------------|--------------------|
| Tanger     | 0.18              | 0.20       | 145                |
| Besòs      | 0.16              | 0.20       | 162                |
| Vilanova   | 0.16              | 0.20       | 170                |
| Maragall   | 0.18              | 0.20       | 155                |
| Hostafranc | 0.19              | 0.20       | 145                |
|            |                   |            |                    |

Find out more



### CMP bids

- Table of submitted flexibility bids per CMP per market session and node at each TSO-DSO interconnection point
  - Curtailable/non-curtailable bid blocks
  - Real/virtual CMP

#### CMP bids

| CMP | Market time          | Curtailable | Node | Price (€/kWh) | P (kW) | Virtual | ^ |
|-----|----------------------|-------------|------|---------------|--------|---------|---|
| ONE | 2017-02-13T23:55:00Z | no          | 6    | 0.32          | 2.5    | No      |   |
| TWO | 2017-02-13T23:55:00Z | no          | 10   | 0.26          | 7.5    | Yes     |   |
| V2G | 2017-02-13T23:55:00Z | yes         | 7    | 0.28          | 50     | Yes     |   |
| ONE | 2017-02-14T00:00:00Z | no          | 6    | 0.32          | 2.5    | No      |   |
| TWO | 2017-02-14T00:00:00Z | no          | 10   | 0.26          | 7.5    | Yes     |   |
| V2G | 2017-02-14T00:00:00Z | yes         | 7    | 0.28          | 57     | Yes     |   |
| V2G | 2017-02-14T00:00:00Z | yes         | 7    | 0.28          | -10    | Yes     | ~ |

### CMPs (aggregated load)



- Time plot of aggregated load of customers' portfolio of each CMP
  - Baseline (yellow)
  - Dispatched power, i.e. (baseline + dispatched flexibility) (green)
  - Delivered (measured) power (brown)





#### VCMP01





# What has been done from the aggregation part





#### Status – Day Ahead





#### Status – Intraday





#### Status – Real Time

110 105 100 95 90 . 85 80 75 70 19:12:00 20:24:00 21:36:00 22:48:00 00:00:00 01:12:00 01EC 02DA 05RP 18RQ 22FR 60KC • • • • AVG 

**BATTERY CHARGE** 

31

# Pilot C - Physical Layer SmartNet Vodafone BTS transformation into DER plants.





- **Curtailment principle :** integrate the remote battery test functionality to pilot the radio equipment switch to back up batteries on demand
- Scenario: 20 Radio Base stations equipped with
  - 48V controller SW: 2 brands Eltek and Huawei
  - SNMP connection

•

- Mobile Link 4G modem+ Moxa gateway
- 4x12 V 100amph VRLA Batteries
- 1 smart meter with 1mn slot readings



### Field test: 90% operational

#### Smart Net



#### Feb 2018





| VF Site | Vodaofne Name                  | PSU Type | Battery<br>Status | Monitoring   |         | Comment/Actions                   |
|---------|--------------------------------|----------|-------------------|--------------|---------|-----------------------------------|
|         | B SANTS                        | Huawei   | Good              | TBC          | Good    | Remote meter connectivity in test |
| 621     | B PERU                         | Huawei   | Good              | TBC          | Good    | Remote meter connectivity in test |
| 801     | B ERCILLA46                    | Eltek    | Good              | Good         | Working | ok                                |
| 3208    | B_PAUCLARIS                    | Eltek    | Good              | Good         | Working | ok                                |
| 5297    | B_CARTAGENA                    | Eltek    | Good              | Good         | Working | ok                                |
| 10048   | B_TOLRA51                      | Huawei   | TBC               | TBC          | TBC     | Coms issue on controller          |
| 11847   | B_MONTSERRAT20                 | Eltek    | Good              | Good         | Working | ok                                |
| 26435   | B_GRANVIA653                   | Huawei   | Good              | Good         | Working | ok                                |
| 28354   | B_TRAFALGAR21                  | Huawei   | Good              | Good         | Working | ok                                |
| 29424   | B_LLULL111                     | Eltek    | Good              | Good         | Working | ok                                |
| 52652   | B_MALLORCA272                  | Huawei   | Good              | Good         | Working | ok                                |
| 52655   | B_DIAGONALMAR_U                | Huawei   | Good              | Good         | Working | ok                                |
| 62806   | B_SANOFI SYNTHELABO_AVENTIS_VP | Eltek    | TBC               | Good         | TBC     | SNMP issue .                      |
| 64936   | B_CN_MONTJUICH                 | Eltek    | TBC               | L4G to repla | TBC     | Replace ML4G                      |
| 70903   | B_BAC_DE_RODA_LLULL            | Eltek    | Good              | Good         | Working | ok                                |
| 76469   | B_BCNACTIVA                    | Eltek    | Good              | Good         | Working | ok                                |
| 77879   | B_ARAGÃ_472                    | Huawei   | Good              | Good         | Good    | ok                                |
| 80263   | B_PS_MARAGALL74                | Huawei   | Good              | Good         | Good    | ok                                |
| 85405   | B_LLACUNA_10                   | Eltek    |                   |              | Equipme | nt swap required                  |
| 85407   | B_PALLARS_193                  | Eltek    | Good              | Good         | Good    | ok                                |

Jun 2018: 90 to 100 Kw curtailable

#### Trend ٠ 8.6 4.4 1.6 -10 -100 16 2 -450 10:55 11:00 11:05 11:10 11:15 11:20 11:25 11:30 11:35 11:40 11:45 11:50 11:55 09.05 09.10 09.15 09.20 10:00 10:05 10:10 10:15 10:20 10:25 10:80 10:40 10:45 10:50 09:25 09:30 09.35 09:40 09:45 09:50 09:55 10:35 Period from .t 30/01/2018 09:00 to 30/01/2018 12:00 Time zone: Europe/Berl . Server time zone: Europe/Berl Auto, scale Adjust scale Data point Unit Diagram Color Axis Counter Min/Mar comp. to

重量压化区仪已

素颜白 化单弦合

美麻市 化总成合

 $\mathbb{P}$ 

-RWh



4

 $\overline{\mathbb{M}}$ 

1

SmartNet / 82658 / Realtime /9000204043724647358.2168978201

SmartNet / 62666 / Battery Test Start Stop [1 or 2] (362117070061731.hwCtrlBattsTestStartStop

SmartNet / 62665 / Battery String Current (Amos) (352117070051731.hwBattStringCurrent



٠

.

10,0 to 3.1

-574 to 331 🔮

×

×

### Benefits of flexibility usage for the DER

As many telecoms operators, Vodafone manages a vast technical and multi site estate, with installed energy backup to allow customer enjoying voice call and data speed in any circumstances.

In good grid conditions, the unused available capacity backup aggregated from Bases stations can be reused by the DSO for congestion management, and eventually avoiding costly ignition of thermic power plants. Vodafone by itself in EU could represent 250MW + of dispatchable load.

SmartNet benefits demonstration allowing a regulation change in the next years will help unlock the value of Vodafone small infrastructure power assets while contributing to the social welfare of European citizens.











#### Thank You

#### Miguel Pardo

New Technologies & Innovation Network Technology Iberia Global Infrastructure & Networks

#### **Contact Information**

| Affiliation: | Endesa Distribución Eléctrica |
|--------------|-------------------------------|
| Email:       | miguel.pardo@enel.com         |









#### SmartNet-Project.eu

This presentation reflects only the author's view and the Innovation and Networks Executive Agency (INEA) is not responsible for any use that may be made of the information it contains.