

European

Connecting the smart community

Smart TSO-DSO interaction schemes, market architectures and ICT Solutions for the integration of ancillary services from demand side management and distributed generation

Market Architectures Integrating Ancillary Services from Distributed Energy Resources

Olivier Devolder *Head of Energy Group* N-SIDE

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 691405

Market architecture for TSO-DSO coordination schemes

Defining a new ancillary service (AS) market for TSO-DSO coordination schemes

What is required?

- Ensure a safe AS procurement at the lowest cost for system operators
- Extract flexibility of **distributed energy resources** (DERs) in an efficient way
- Allow a level playing field for competition between different sources of flexibility
- Valorize flexibility at its **real value** for the power system

What has to be avoided?

- Discouraging participation of DERs by not taking into account their constraints
- Creating congestion and/or voltage problem by activation at a wrong location
- Making myopic real-time decisions that compromise an efficient balancing management for future time steps
- Doing unnecessary activations that increase cost and/or risk for system operators

The market is a **closed-gate auction**. The clearing frequency is chosen close to real-time (e.g. **5 minutes**).

6....

The market uses a **rolling optimization**. The optimization window (or horizon) contains several time steps (e.g. **1 hour**)

Output of the first time step is a firm decision. It contains the actual activation of flexible assets and has to be followed by the aggregators/owners.

Output of the next time steps are advisory decisions. They will assist the aggregators and the TSO to anticipate the availability of flexibility in the upcoming time steps.

- = firm output decisions
- = provisionary output decisions

Market allows various bid format, accompanied by temporal and logical constraints:

Market Design: Network

¹ Photo source: Technical University of Munich (http://ens.ei.tum.de)

- <u>Maximization of Welfare</u> versus <u>Minimization of Activation Costs</u>
- Should we only activate what is necessary, or favor extra welfare by allowing additional exchanges?

Options to define the price received by activated bids:

A. Pay as Bid: The same price that was provided during the bidding.

Pros: Simplifies the pricing mechanism. **Cons**: It does not encourage to bid at real marginal cost of flexibility. Reduces welfare. Reduces transparency.

B. Zonal Marginal Price: One price per region/zone/area.

Pros: Projects value of flexibility at each zone. Less complex than nodal pricing. **Cons**: How to define the zone sizes? One price for each distribution network? Does not reflect real local needs in pricing

C. Locational Marginal Price: A single price at each node of the transmission and distribution(s) networks.

Pros: Projects real value of flexibility at each node. **Cons**: Complex pricing mechanism. Intuitiveness.

Locational Marginal Pricing as the preferred option

Market Design: Pricing

- Calculating Distributed Locational Marginal Prices (DLMP) in which the clearing algorithm assigns individual prices for each node of the grid.
- A difference between DLMPs is a result of two phenomena in the lines:
 - Energy losses (as a result of non-zero impedance)
 - Network constraints (line capacity limits and congestions)

Defining a new ancillary service (AS) market for TSO-DSO coordination schemes:

What is required?

- AS procurement at the lowest cost Mathematical optimization
- Allow a level playing field for competition Variety of market products
- Valorize flexibility at its real value _____ Nodal pricing

What has to be avoided?

- Not taking into account DERs' **constraints** Complex products
- Creating congestion and voltage problem Integrated detailed network model —
- Making myopic decisions _____ Rolling optimization
- Doing unnecessary activations Smart objective function

- Extract flexibility of **DERs** Open for aggregated/non-aggregated bids

- Next steps:
 - Implementation of the different market designs for the different TSO-DSO coordination schemes
 - **Test** the different TSO-DSO market architectures with different parameters
 - **Report** on speed vs accuracy tradeoff
- Challenges
 - **Tractability** issues: solving a MIP (market clearing) in a few minutes, while considering: transmission and distribution grid constraints, a receding time horizon and complex market products (integer variables)
 - **Data** availability: e.g. prediction of injection/offtake at network nodes, scheduled TSO-DSO exchange profile.

SmartNet-Project.eu

This presentation reflects only the author's view and the Innovation and Networks Executive Agency (INEA) is not responsible for any use that may be made of the information it contains.