

Smart TSO-DSO interaction schemes, market architectures and ICT Solutions for the integration of ancillary services from demand side management and distributed generation

7th European Electricity Ancillary Services and Balancing Forum | 18 April 2016

SmartNet pilots: The demonstration of TSO-DSO coordination schemes

Carlos Madina Tecnalia

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 691405

Agenda

- Aims and goals of pilots
- Link to other SmartNet activities
- Activities description:
 - o Italian Pilot
 - o Danish Pilot
 - Spanish Pilot
- Key products

Aims and goals of pilots

Realisation of three complementary pilots to evaluate the performance of different TSO-DSO interactions under different market structures.

Coordination with laboratory simulations to bridge the gap between present realworld implementation and the opportunities envisaged for the future.

Identification & removal of barriers to facilitate the way to the pan-European market for ancillary services.

Pilot A

Services – Aggregation of information

Data to be aggregated

- Total power per source & load at every HV-MV transformer.
- P&Q per source & load at every HV-MV transformer (max. delay 20 s).
- P forecasts per source (1 h resolution, 72 hour period, update every 3 h).
- P&Q operational limits for the DSO as VPP.

Services – Active power regulation and FRR provision

FRR

- Power variation, around a program level, following a set-point by the TSO.
- Set-point is % of the regulation band made available by the provider.
- Same set-point for the whole area \rightarrow easy to implement by DG.
- Set-point updated every 8 s, with 4% variation. Closed-loop cycle is 200 s.

Services – Voltage regulation

- TSO uses an optimisation algorithm for the HV grid operation.
- TSO calculates a voltage set-point a the TSO-DSO interconnection point.
- The DSO receives the V set-point
- DSO calculates the set-point for individual DG units connected at distribution level.
- DG management must be compatible with hierarchical regulation on HV networks in terms of time of regulation. MV generation regulation must be decoupled from HV regulation (slower).

Architecture

11

the control of dispersed generation)

Pilot B

Goals

- Demonstrate aggregation services (30 summer houses).
- Implementation in field of ICT technology to exchange data between TSO, DSO, aggregator and smart homes.
- Use of online web-based services for price, load, and wind power forecasting.
- Development of architecture for all 3 services.

Communication

Forecasting

Ancillary services

14

Architecture

Smart house concept

15

Services

- The large inertia of pools allows for shift of electricity consumption by several hours.
- Via active coordination of the flexibility below a critical node on the DSO grid.
- Active load management to help finding an optimal routing of the power.

Pilot C

17

Flexibility sources: load

Inspiring Business

Flexibility sources: V2G

Cars give energy to cities: The V2G project

- EVs can be managed smartly to store clean energy and inject it based on the grid's actual needs and power the daily life of cities.
- "Electric drivers" can:
 - Recharge batteries when energy costs & demand are low.
 - Use EVs as "four-wheel mobile plants" and feed the energy stored back into the grid, with direct economic returns.

Key products

Validated TSO-DSO interactions (technical + operational)

Demonstrated interoperability and scalability to the whole European system.

Identified barriers for real implementation and regulatory proposals

Guidelines on best practices to implement the considered TSO-DSO schemes

SmartNet-Project.eu

This presentation reflects only the author's view and the Innovation and Networks Executive Agency (INEA) is not responsible for any use that may be made of the information it contains.