External workshop | 20.06.2018

Aggregation models

Mario Dzamarija (DTU)
Aggregator’s role

- visibility to MO (≥ 100 kW)
- filters necessary data to MO
- balance responsibility
- activation

MO – market operator
Aggregation approaches

Aggregation approaches used for bidding in electricity markets:

• Physical (bottom-up) approach
• Traces approach
• Data driven approach
• Hybrid approach

Each of them has certain advantages: accuracy, required data, disaggregation.
• aggregating household devices
• clusters of consumers
• aggregator max. revenue, sends price-volume signal to cluster
• cluster minimizes end-users’ electricity bill
• access day-ahead and intraday markets
• P. Koponen et al., ”Toolbox for Aggregator of Flexible Demand”

- single aggregation model
- physical approach
- agg. DERs @ trans. – distr. interface, concept of VPP
- D. Pudijanto et al., ”VPP and system integration of DERs”

VPP – virtual power plant

Characteristics:
(1) Output
(2) Reserve
(3) Response
(4) Cost characteristics
Aggregation models (1)

1. Stationary EES
2. EVs
3. Variable RES
4. Others: backup (fossil fuel) generators, other dispatchable generators (biogas, hydro)
5. CHPs
6. TCLs
7. Shiftable Loads
8. Curtailable Loads

DERs activation

| 1. Atomic Loads |
| 2. CHP Units |
| 3. TCLs |
| 4. EES Units |
| 5. Curtailable Gen./Loads |

aggregate

bidding

market

equilibrium price
Aggregation models (2)

<table>
<thead>
<tr>
<th>Model</th>
<th>Aggregation approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHP Units</td>
<td>Physical</td>
</tr>
<tr>
<td>Curtailable generation and curtailable loads</td>
<td></td>
</tr>
<tr>
<td>EES Units</td>
<td></td>
</tr>
<tr>
<td>TCLs</td>
<td></td>
</tr>
<tr>
<td>Atomic Loads</td>
<td>Traces</td>
</tr>
</tbody>
</table>

Physical (bottom-up) approach

The aggregator knows all parameters of DERs and its real time status.

- The disaggregation is straightforward.
- Potentially hard to implement when many heterogeneous energy resources are included.

Traces approach

Characterized by load profiles and the cost associated to each profile, and not by the exact physical DERs’ characteristics.

- The disaggregation is straightforward.
CHP units bidding curve

- zero corresponds to baseline power
Curt. gen. bidding curve

- zero corresponds to baseline power
Market discomfort cost

(source: Miguel Marroquin)

- valorise the benefit of a **future** activation vs. current activation
Further info

M. Dzamarija et al., “D2.1: Aggregation models” (24/05/2018)

H. Marthinsen et al., “Aggregation model for curtailable generation and sheddable loads”

J. Camargo et al., “A network flow model for price-responsive control of deferrable load profiles”

smartnet-project.eu
Mario Dzamarija

Contact Information

Affiliation: DTU
Email: madz@dtu.dk
SmartNet-Project.eu

This presentation reflects only the author’s view and the Innovation and Networks Executive Agency (INEA) is not responsible for any use that may be made of the information it contains.