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Due to an increase of variable, non-dispatchable Renewable Energy Sources 
(RES), predominantly based on wind and PV solar, flexibility is becoming a key 
need for the power systems. One of the key assumptions to be demonstrated by 
the SmartNet project is that such flexibility needs, to a certain extent, can be met 
by the Distributed Energy Resources (DERs), namely demand side management, 
distributed generation and storage. The flexibility coming from DERs has the 
potential to provide local services to the Distribution System Operator (DSO) as 
well as Ancillary Services (AS) to the Transmission System Operator (TSO). The 
novel market mechanism, the new coordination schemes between DSOs and 
TSOs, and the supporting distribution level ICT infrastructure can facilitate the 
flexibility provided by DERs. 
 
The aggregator’s role is to act on behalf of the service providers on the 
electricity market. In general, the aggregator’s tasks are: 

• determining the price and the quantity of individual bids, 

• aggregation, 

• disaggregation. 
The aggregator uses the DERs mathematical models, which specify the physical 
and dynamic behavior of the resources, in order to accurately determine the 
amount of flexibility and its associated cost. The aggregator outputs the amount 
and price of ancillary service DERs are willing to provide, in the form of the 
market bids. The complex offers must take into account the dynamics and 
physical characteristics of the different DERs, provided by [1], whereby they are 
still simple enough so that they can be processed by the market-clearing 
algorithms described in [2]. Due to a larger number of DER units, which have a 
small flexibility capability, the aggregators play a key role, by reducing the 
amount of data passed onto the AS market. This data would otherwise congest 
the market clearing algorithm developed in [2]. The aggregators’ role, besides 
aggregating the bids of the individual assets, is also disaggregation (sometimes 
also referred to as allocation). In terms of the power system’s operation 
disaggregation would be most similar to the generation economic dispatch. 
 
In the SmartNet project the individual DERs are classified into eight categories 
[1]: demand side management (shiftable and sheddable loads, as well as 
Thermostatically Controlled Loads (TCLs)), distributed generation 
(conventional, RES, Combined Heat and Power (CHP)) and storages (static, 
electric vehicles). However, when it comes to the aggregation process, the more 
distinct the features of the aggregated devices are, the less accurate the 
approximations can become during their aggregation and the more difficulties 
can arise during the disaggregation stage. Therefore, for the aggregation 
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purposes, these DERs categories are grouped, based on the modeling 
similarities, into five aggregation models: 

• Atomic Loads, 

• CHP, 

• Curtailable Generation and Sheddable Loads, 

• Storages, 

• TCLs. 
 
As the market clearing mechanism is able to cope with multiple bids originating 
from the same aggregator [2], the simplest approach is for the aggregator to 
allow all five aggregation-type-specific categories, mentioned above, to generate 
bids for their own aggregated devices. By doing so, every bid that gets accepted 
by the market can then be assigned to the corresponding device-type-specific 
disaggregation algorithm, which is best equipped for optimally distributing the 
allocated flexibility over its individual devices. By doing so there is no need to 
build an overarching aggregation model, as such a model would inevitably make 
disaggregation cumbersome. 
 
In the literature, there are several different aggregation approaches used for 
bidding in the electricity market: 

• physical (bottom-up), 

• traces 

• data driven, 

• hybrid. 
Each aggregation approach has certain advantages – either by the amount of 
required data, or the accuracy aspect of the modelled portfolio, which are 
discussed below. 
The physical (bottom-up) approach [3], [4] uses the horizontal summation 
[5], [6] of power calculated for the individual devices. In this approach, it is 
assumed that the aggregator knows all of the parameters of each individual 
device and also its real time status. In [3] physical entities, including onsite 
generation, storage systems, load curtailment and load shifting, are modelled 
as aggregated bids and applied in a problem of constrained optimization. The 
bottom-up approach intends to study the adoption of DERs from the 
perspective of the physical entities, including the constraints and technical 
peculiarities for each technology. The physical approach can potentially 
become difficult to implement when many heterogeneous energy resources 
are included. In fact, different values and constraints have to be defined and 
represented in the model, where the approximation of generic values might 
not accurately represent the modeled DERs’ portfolio. The advantage of this 
approach is that the disaggregation is straightforward. 
The traces approach shares similarities with the physical bottom-up 
approach. The exception is that it is characterized by load profiles and the 
cost associated to each of the profiles, and not by the exact physical DERs’ 
characteristics due to, e.g. confidentiality reasons, prohibitive complexity or 
insufficient accuracy of the available models. The aggregation is represented 
by all the possible combinations of feasible profiles of all the devices. The 
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particular advantage of this approach, the same as for the bottom-up 
approach, is that the disaggregation is also straightforward. When a bid is 
formed from a particular combination of the feasible device profiles and the 
bid is cleared, allocation of feasible profiles to every aggregated device 
simply means allocation of profiles corresponding to that combination. 
The data driven approach [7]-[9] is based on data and intends to emulate the 
behavior of a pool of devices. Here, the physical entity and the specific 
technology is not considered anymore, as the behavior of the whole pool is 
analyzed. For this approach, the availability of good-quality data is 
fundamental. Alternatively, the data needs to be simulated. In [8] and [9] the 
data-driven approach is applied for predicting the optimal bidding schedule. 
The data-driven approach does not require any reference value taken from 
literature, since it is built by using a more accurate level of information. Due 
to this reason, it needs more input data than the physical approach, which 
can be problematic in case of data scarcity. This is why this aggregation 
approach is not used in SmartNet, since the consumption data, correlating to 
the electricity price, is still nonexistent for most of the DERs considered in 
this project. Opposed to the physical approach, which needs to have the 
aggregated values and parameters properly estimated, in the data-driven 
approach the parameters estimation comes from the data. 
The hybrid approach [10]-[12] uses a single, or a limited number of virtual 
devices in order to represent the entire population of aggregated devices. 
Such practice reduces the number of individual devices and avoids 
exhaustive bid parametrization. Hence it can be argued that in the case when 
a really high number of devices needs to be aggregated the hybrid model is a 
reasonable approach. The drawback of this approach is that it requires a 
disaggregation model, in order to allocate flexibility to individual devices. It 
is also a fact that in the case of heterogeneous devices, the hybrid approach 
introduces a modeling error. A way to reduce this error is to cluster the 
devices that have similar model parameters, such that there are 
homogeneous devices in each cluster. A potential algorithm for clustering of 
the individual devices is the k-mean algorithm [13], [14]. As the number of 
clusters increases, the hybrid approach becomes closer to the bottom-up 
approach. In the case when the number of clusters equals the number of 
individual devices, the hybrid approach becomes the physical, bottom-up, 
approach. 
 
Table 1 Overview of different aggregation approaches for DERs 

Aggregation approach Literature Disaggregation 

Physical [3], [4] Straightforward 

Traces - Straightforward 

Data-driven [7], [8], [9] Model 

Hybrid [10], [11], [12] Model 

 
The bottom-up approach was selected as the preferred option due to the 
lower number of devices which are being aggregated at each MV node. The 
number of devices is higher when aggregating at the transmission level node, 
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making the bottom-up approach cumbersome. The aggregation is done at 
each MV distribution level node separately. By choosing the bottom-up 
physical approach, disaggregation is straightforward, since the devices which 
bid with price lower than the market clearing price are the only ones being 
activated. This makes disaggregation models superfluous. 
 
Although, the bottom-up approach was selected as the preferred option, as 
explained above, other aggregation approaches were used in some of the models 
due to physical characteristics of the aggregated devices, the number of the 
individual devices being aggregated and the availability of data. This is 
summarized in the table below. 
 
Table 2 Aggregation approaches used for aggregation of different DERs 

Models 
Aggregation 

approach 

Atomic Loads • Traces 

CHP • Physical 

TCL 

• Physical 

• Hybrid 

Storage • Physical 

Curtailable 

generation and 

sheddable loads 

• Physical 
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